Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.767
Filtrar
1.
Environ Res ; : 118921, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631474

RESUMO

Bacteriophages (phages) are viruses capable of regulating the proliferation of antibiotic resistant bacteria (ARB). However, phages that directly cause host lethality may quickly select for phage resistant bacteria, and the co-evolutionary trade-offs under varying environmental conditions, including the presence of antibiotics, remains unclear as to their impact on phage and antibiotic resistance. Here, we report the emergence of phage resistance in three distinct E. coli strains with varying resistance to ß-lactam antibiotics, treated with different ampicillin (AMP) concentrations. Hosts exhibiting stronger antibiotic resistance demonstrated a higher propensity to develop and maintain stable phage resistance. When exposed to polyvalent phage KNT-1, the growth of AMP-sensitive E. coli K12 was nearly suppressed within 18 h, while the exponential growth of AMP-resistant E. coli TEM and super-resistant E. coli NDM-1 was delayed by 12 h and 8 h, respectively. The mutation frequency and mutated colony count of E. coli NDM-1 were almost unaffected by co-existing AMP, whereas for E. coli TEM and K12, these metrics significantly decreased with increasing AMP concentration from 8 to 50 µg/mL, becoming unquantifiable at 100 µg/mL. Furthermore, the fitness costs of phage resistance mutation and its impact on initial antibiotic resistance in bacteria were further examined, through analyzing AMP susceptibility, biofilm formation and EPS secretion of the isolated phage resistant mutants. The results indicated that acquiring phage resistance could decrease antibiotic resistance, particularly for hosts lacking strong antibiotic resistance. The ability of mutants to form biofilm contributes to antibiotic resistance, but the correlation is not entirely positive, while the secretion of extracellular polymeric substance (EPS), especially the protein content, plays a crucial role in protecting the bacteria from both antibiotic and phage exposure. This study explores phage resistance development in hosts with different antibiotic resistance and helps to understand the limitations and possible solutions of phage-based technologies.

2.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617336

RESUMO

Formation of biomolecular condensates can be driven by weak multivalent interactions and emergent polymerization. However, the mechanism of polymerization-mediated condensate formation is less studied. We found lateral root cap cell (LRC)-specific SUPPRESSOR OF RPS4-RLD1 (SRFR1) condensates fine-tune primary root development. Polymerization of the SRFR1 N-terminal domain is required for both LRC condensate formation and optimal root growth. Surprisingly, the first intrinsically disordered region (IDR1) of SRFR1 can be functionally substituted by a specific group of intrinsically disordered proteins known as dehydrins. This finding facilitated the identification of functional segments in the IDR1 of SRFR1, a generalizable strategy to decode unknown IDRs. With this functional information we further improved root growth by modifying the SRFR1 condensation module, providing a strategy to improve plant growth and resilience.

3.
Hepatology ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557414

RESUMO

BACKGROUND AND AIMS: Epigenetic reprogramming and escape from terminal differentiation are poorly understood enabling characteristics of liver cancer. Keratin 19 (KRT19), classically known to form the intermediate filament cytoskeleton, is a marker of stemness and worse prognosis in liver cancer. This study aimed to address the functional roles of KRT19 in liver tumorigenesis and to elucidate the underlying mechanisms. APPROACH AND RESULTS: Using multiplexed genome editing of hepatocytes in vivo, we demonstrated that KRT19 promoted liver tumorigenesis in mice. Cell fractionation revealed a previously unrecognized nuclear fraction of KRT19. Tandem affinity purification identified histone deacetylase 1 (HDAC1) and REST co-repressor 1 (RCOR1), components of the co-repressor of RE-1 silencing transcription factor (CoREST) complex as KRT19-interacting proteins. KRT19 knockout markedly enhanced histone acetylation levels. Mechanistically, KRT19 promotes CoREST complex formation by enhancing HDAC1 and RCOR1 interaction, thus increases the deacetylase activity. ChIP-seq revealed hepatocyte-specific genes, such as hepatocyte nuclear factor 4 alpha (HNF4A), as direct targets of KRT19-CoREST. In addition, we identified forkhead box P4 (FOXP4) as a direct activator of aberrant KRT19 expression in liver cancer. Furthermore, treatment of primary liver tumors and patient-derived xenografts in mice suggest that KRT19 expression has the potential to predict response to HDAC inhibitors especially in combination with Lenvatinib. CONCLUSIONS: Our data show that nuclear KRT19 acts as a transcriptional co-repressor through promoting the deacetylase activity of the CoREST complex, resulting in dedifferentiation of liver cancer. These findings reveal a previously unrecognized function of KRT19 in directly shaping the epigenetic landscape in cancer.

4.
Nat Prod Res ; : 1-10, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563116

RESUMO

Phytochemical investigation of the roots of Saposhnikovia divaricata (Turcz.) Schischk resulted in the isolation of twelve coumarin derivatives including one new 3,4-dihydroisocoumarin (1) and eleven known 3,4-unsubstituted coumarins (2-12). Structural elucidation of compounds 1-12 was established by 1D and 2D NMR spectra referring to the literature, together with high-resolution mass spectrometric analysis. LPS-induced RAW264.7 inflammatory cell model was used to determine the potential antiinflammation activity of all the isolated compounds in vitro. The results showed that compound 3 significantly inhibited the production of lipopolysaccharide (LPS)-induced NO in macrophages (IC50 = 4.54 ± 1.71 µM), more active than the positive control (L-NMMA).

5.
Science ; 384(6692): 185-189, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603510

RESUMO

Ultrahigh-power-density multilayer ceramic capacitors (MLCCs) are critical components in electrical and electronic systems. However, the realization of a high energy density combined with a high efficiency is a major challenge for practical applications. We propose a high-entropy design in barium titanate (BaTiO3)-based lead-free MLCCs with polymorphic relaxor phase. This strategy effectively minimizes hysteresis loss by lowering the domain-switching barriers and enhances the breakdown strength by the high atomic disorder with lattice distortion and grain refining. Benefiting from the synergistic effects, we achieved a high energy density of 20.8 joules per cubic centimeter with an ultrahigh efficiency of 97.5% in the MLCCs. This approach should be universally applicable to designing high-performance dielectrics for energy storage and other related functionalities.

6.
Nat Prod Res ; : 1-8, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597194

RESUMO

Sixteen triterpenoid saponins were isolated from the roots of Bupleurum scorzonerifolium Willd., including a new triterpenoid saponin and new natural saponin that was characterised by NMR for the first time, along with 14 known triterpenoid saponins. The structures of the compounds were established by 1D and 2D NMR spectroscopy, HR-ESI-MS, and comparison with the literature. The cytotoxic activity of the compounds against 4T1 cells was determined using the CCK8 method. Compounds 9 and 6 showed the strongest cytotoxic activity with IC50 values of 2.75 ± 0.86 and 3.78 ± 0.50 µM, respectively. Compounds 2-5 and 8 showed potent cytotoxic activity. Compounds 14 and 16 showed moderate cytotoxicity.

7.
Phytochemistry ; 222: 114072, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561105

RESUMO

Phytochemical investigations of the leaves of Astragalus membranaceus (Fisch.) Bge. have led to the isolation of 12 undescribed triterpenoid saponins named huangqiyenins M-X. The structures of the undescribed compounds were determined using NMR and HRESIMS data. The cytotoxicity of these compounds against the RKO and HT-29 colon cancer cell lines was evaluated. Among these compounds, huangqiyenin W exhibited the highest cytotoxic activity against RKO colon cancer cells, whereas huangqiyenin Q and W showed moderate cytotoxic activity against HT-29 colon cancer cells. The network pharmacology results indicated that STAT3, IL-2 and CXCR1 are the correlated targets of huangqiyenin W against colon cancer, with AGE-RAGE and Th17 cell differentiation as the key signaling pathways.

8.
J Ethnopharmacol ; 328: 118109, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38570147

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Dryopteris crassirhizoma Nakai., a commonly used herb, is known as "Guan Zhong" in China, "Oshida" in Japan and "Gwanjung" in Korea. It has long been used for parasitic infestation, hemorrhages and epidemic influenza. AIM OF THE REVIEW: The present paper aims to provide an up-to-date review at the advancements of the investigations on the traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics of D. crassirhizoma. Besides, possible trends, therapeutic potentials, and perspectives for future research of this plant are also briefly discussed. MATERIALS AND METHODS: Relevant information on traditional use, phytochemistry, pharmacological activity, toxicology and pharmacokinetics of D. crassirhizoma was collected through published materials and electronic databases, including the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar, and China National Knowledge Infrastructure. 109 papers included in the article and we determined that no major information was missing after many checks. All authors participated in the review process for this article and all research paper are from authoritative published materials and electronic databases. RESULTS: 130 chemical components, among which phloroglucinols are the predominant groups, have been isolated and identified from D. crassirhizoma. D. crassirhizoma with its bioactive compounds is possessed of extensive biological activities, including anti-parasite, anti-microbial, anti-viral, anti-cancer, anti-inflammatory, anti-oxidant, anti-diabetic, bone protective, immunomodulatory, anti-platelet and anti-hyperuricemia activity. Besides, D. crassirhizoma has special toxicology and pharmacokinetics characterization. CONCLUSIONS: D. crassirhizoma is a traditional Chinese medicine having a long history of application. This review mainly summarized the different chemical components extract from D. crassirhizoma and various reported pharmacological effects. Besides, the toxicology and pharmacokinetics of D. crassirhizoma also be analysed in this review. However, the chemical components of D. crassirhizoma are understudied and require further research to expand its medicinal potential, and it is urgent to design a new extraction scheme, so that the active ingredients can be obtained at a lower cost.


Assuntos
Botânica , Medicamentos de Ervas Chinesas , Dryopteris , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/toxicidade , Fitoterapia , Medicina Tradicional Chinesa , Etnofarmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/toxicidade , Extratos Vegetais/uso terapêutico , Extratos Vegetais/toxicidade
9.
Phytochemistry ; 222: 114091, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615926

RESUMO

A total of 14 previously undescribed steroidal saponins named capsicsaponins A-N were isolated from the leaves of Solanum capsicoides, encompassing various types, including cholesterol derivatives and pseudospirostanol saponins. The structures of all compounds were determined through comprehensive analysis of spectroscopic data (1D NMR and 2D NMR), along with physicochemical analysis methods (acid hydrolysis, OR, and UV). Moreover, in the H2O2-induced pheochromocytoma cell line model, compounds 1-14 were screened for their neuroprotective effects on cells. The bioassay results demonstrated compounds 8-14 were able to revive cell viability compared to the positive control edaravone. The damage neuroprotection of the most active compound was further explored.

10.
Poult Sci ; 103(6): 103675, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38593546

RESUMO

Polygonatum sibiricum polysaccharide (PSP) has demonstrated diverse medicinal properties, extensively researched for human applications. Nonetheless, there is a lack of studies investigating the potential advantages of PSP in poultry farming. The present study investigated the impact of incorporating PSP into broiler diets on their growth performance, meat quality, blood metabolites, antioxidative status, and ileal histomorphology. Two hundred and forty-one-day-old male Ross-308 broiler chicks (44.98 ± 0.79 g) were randomly assigned to 3 experimental groups, with 8 replicates of 10 birds each. The birds were fed diets supplemented with PSP at 0, 400, and 800 mg/kg (control, PSP400, and PSP800, respectively). The results revealed a linear (P > 0.05) improvement in body weight gain, European production efficiency index, and feed conversion ratio during the grower (22-35 d) and overall periods (1-35 d). The pH levels in the ingluvies, ileum, and cecum exhibited a linear reduction (P > 0.05) in the PSP800 group at d 21 and d 35, respectively. Villus height and crypt depth were increased in the PSP400 and PSP800 groups compared to the control group. PSP400 and PSP800 groups exhibited decreased hydrogen peroxide (H2O2) levels and increased total antioxidant capacity (TAC) at 21 d, while at 35 d, TAC and sulfhydryl concentrations were elevated, and H2O2 was reduced only in the PSP800 group compared to the untreated one. No significant variations between the groups at the phylum and genus levels were observed, with Bacteroidetes and Firmicutes being the dominant phyla. However, PSP supplementation notably augmented Firmicutes and Verrucomicrobiota while reducing Euryarchaeota and Proteobacteria. At the genus level, there was an increase in Akkermansia, Alistipes, CHKCI001, Erysipelatoclostridium, and a decrease in Methanobrevibacter. Conclusively, incorporating PSP into broiler diets, particularly at a dosage of 800 mg/kg, improved growth performance, antioxidant capacity, and intestinal architecture and resulted in alterations in cecal microbiota without discernible impacts on digestive function and meat quality criteria.

11.
Actas Esp Psiquiatr ; 52(2): 130-137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622010

RESUMO

OBJECTIVE: To explore the impact of transcranial magnetic stimulation on emotion regulation and quality of life in patients with bipolar disorder (BD) and to evaluate the effectiveness of the mental stress analyzer. METHODS: Patients with BD admitted to our hospital from August 2022 to August 2023 were retrospectively selected. For the present study, 60 patients who received drug therapy served as the control group, and the other 60 patients who received repeated transcranial stimulation on this basis served as the observation group. The heart rate variability (HRV) of the two groups of patients was detected by a mental stress analyzer/HRV analysis system. Hamilton Depression Rating Scale (HAMD), Self-Rating Anxiety Scale (SAS), and Self-Rating Depression Scale (SDS) were used to evaluate the mental state of the two groups of patients. The quality of life of the two groups was assessed using the Comprehensive Quality of Life Questionnaire 74 (GQOLI-74). Clinical effectiveness global rating scale-illness severity (CGI-SI) was used to evaluate the clinical symptoms of the two groups of patients, and the incidence of adverse reactions was calculated. RESULTS: In comparison to the control group, the high-frequency power (HF) of the patients demonstrated an elevation in the observation group, and the low-frequency power (LF) and LF/HF were significantly reduced (p < 0.05). The standard deviation of NN intervals (SDNN), standard deviation of all five-minute NN intervals (SDANN), root mean square of successive differences (rMSSD), and percent RR intervals with a difference in duration higher than 50 ms (PNN50) of patients in the observation group showed a notable increase compared to the control group (p < 0.05). Compared with the control group, the HAMD, SAS, and SDS scores of the patients in the observation group demonstrated a substantial decline relative to the control group (p < 0.05). In contrast to the control group, there was a significant increase in the overall clinical effectiveness rate among patients in the observation group, and the incidence of adverse reactions was significantly reduced (p < 0.05). CONCLUSIONS: Repetitive transcranial magnetic stimulation (rTMS) has significant clinical effects in treating BD and can effectively improve patients' anxiety, suppress emotions, and regulate patients' emotions. At the same time, rTMS has high safety and little impact on the balance of patients' autonomic nervous function, reduces the incidence of adverse reactions, accelerates the patient's recovery process, and is suitable for clinical promotion.


Assuntos
Transtorno Bipolar , Humanos , Transtorno Bipolar/terapia , Estudos Retrospectivos , Qualidade de Vida , Estimulação Magnética Transcraniana , Resultado do Tratamento
12.
Schizophrenia (Heidelb) ; 10(1): 47, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627438

RESUMO

Clozapine-resistant treatment-refractory schizophrenia (CR-TRS) patients face significant clinical challenges. While links between metabolic syndrome (MetS) and inflammatory cytokines in schizophrenia have been established, the relationship between MetS and cytokine levels in CR-TRS patients remains unexplored. This study aimed to investigate the relationship between cytokines levels, clinical symptoms and cognitive impairments in CR-TRS patients, both with and without MetS. The study included 69 CR-TRS patients (31with MetS and 38 without MetS) and 84 healthy controls. The levels of IL-2, IL-6, TNF-α and routine biochemical parameters were measured. Psychopathological symptoms and cognitive function were assessed using the Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), respectively. We found that CR-TRS patients with MetS displayed lower cognitive function scores compared to those without MetS, even when accounting for potential confounders. TNF-α levels were significantly higher in CRTRS patients with MetS compared to those without MetS, demonstrating substantial pathophysiological potential for CR-TRS patients with MetS via receiver operating characteristic curve (ROC). In CR-TRS patients without MetS, IL-2 independently contributed to the total score and general psychopathology subscore of PANSS. Additionally, IL-6 exhibited an independent contribution to the positive subscore of PANSS. In terms of cognition function, IL-6 independently contributed to the delayed memory of RBANS in CR-TRS patients without MetS. TNF-α could potentially serve as a predictive marker for distinguishing between CR-TRS patients with/without MetS, while IL-2 and IL-6 could independently contribute to psychopathological symptoms or cognitive function in CRTRS patients without MetS. Our study provided insights into the potential interplay between cytokines, clinical symptoms and cognitive impairments in CR-TRS patients with/without MetS.

13.
iScience ; 27(4): 109593, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632987

RESUMO

Precise regulation of Type I interferon signaling is crucial for combating infection and cancer while avoiding autoimmunity. Type I interferon signaling is negatively regulated by USP18. USP18 cleaves ISG15, an interferon-induced ubiquitin-like modification, via its canonical catalytic function, and inhibits Type I interferon receptor activity through its scaffold role. USP18 loss-of-function dramatically impacts immune regulation, pathogen susceptibility, and tumor growth. However, prior studies have reached conflicting conclusions regarding the relative importance of catalytic versus scaffold function. Here, we develop biochemical and cellular methods to systematically define the physiological role of USP18. By comparing a patient-derived mutation impairing scaffold function (I60N) to a mutation disrupting catalytic activity (C64S), we demonstrate that scaffold function is critical for cancer cell vulnerability to Type I interferon. Surprisingly, we discovered that human USP18 exhibits minimal catalytic activity, in stark contrast to mouse USP18. These findings resolve human USP18's mechanism-of-action and enable USP18-targeted therapeutics.

14.
Anal Chim Acta ; 1304: 342553, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637054

RESUMO

BACKGROUND: The human immunodeficiency virus (HIV) remains a major worldwide health problem. Nowadays, many methods have been developed for quantitative detecting human immunodeficiency virus DNA (HIV-DNA), such as fluorescence and colorimetry. However, these methods still have the disadvantages of being expensive and requiring professional technicians. Early diagnosis of pathogens is increasingly dependent on portable instruments and simple point-of-care testing (POCT). Therefore, it is meaningful and necessary to develop portable and cheap methods for detecting disease markers. RESULTS: In this work, a label-free chemiluminescence (CL) method was developed for detecting HIV-DNA via a handheld luminometer. To achieve label-free target detection, the CL catalyst, G-triplex-hemin DNAzyme (G3-hemin DNAzyme), was in-situ assembled in the presence of HIV-DNA. For improving sensitivity, HIV-DNA induced the cyclic strand displacement reaction (SDR), which can form three G3-hemin DNAzymes in one cycle. So, the chemiluminescence reaction between luminol and H2O2 was highly effectively catalyzed, and the CL intensity was linearly related with the concentration of HIV-DNA in the range of 0.05-10 nM with a detection limit of 29.0 pM. Due to the high specificity of hairpin DNA, single-base mismatch can be discriminated, which ensured the specific detection of HIV-DNA. SIGNIFICANCE: In-situ formation of G3-hemin DNAzyme led to label-free and selective detection without complex synthesis and functionalization. Therefore, it offers a cheap, selective, sensitive and portable method for detecting disease-related genes, which is promising for POCT of clinical diagnosis in resource-limited settings.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Infecções por HIV , Humanos , DNA Catalítico/metabolismo , Hemina , Peróxido de Hidrogênio , Medições Luminescentes/métodos , DNA/genética , Infecções por HIV/diagnóstico , Técnicas Biossensoriais/métodos , Limite de Detecção
15.
Elife ; 132024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619103

RESUMO

O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.


Newly synthesized proteins often receive further chemical modifications that change their structure and role in the cell. O-GlcNAcylation, for instance, consists in a certain type of sugar molecule being added onto dedicated protein segments. It is required for the central nervous system to develop and work properly; in fact, several neurological disorders such as Alzheimer's, Parkinson's or Huntington's disease are linked to disruptions in O-GlcNAcylation. However, scientists are currently lacking approaches that would allow them to reliably identify which proteins require O-GlcNAcylation in specific regions of the brain to ensure proper cognitive health. To address this gap, Yu et al. developed a profiling tool that allowed them to probe O-GlcNAcylation protein targets in different tissues of fruit flies. Their approach relies on genetically manipulating the animals so that a certain brain area overproduces two enzymes that work in tandem; the first binds specifically to O-GlcNAcylated proteins, which allows the second to add a small 'biotin' tag to them. Tagged proteins can then be captured and identified. Using this tool helped Yu et al. map out which proteins go through O-GlcNAcylation in various brain regions. This revealed, for example, that in the mushroom body ­ the 'learning center' of the fly brain ­ O-GlcNAcylation occurred predominantly in the protein-building machinery. To investigate the role of O-GlcNAcylation in protein synthesis and learning, Yu et al. used an approach that allowed them to decrease the levels of O-GlcNAcylation in the mushroom body. This resulted in reduced local protein production and the flies performing poorly in olfactory learning tasks. However, artificially increasing protein synthesis reversed these deficits. Overall, the work by Yu et al. provides a useful tool for studying the tissue-specific effects of O-GlcNAcylation in fruit flies, and its role in learning. Further studies should explore how this process may be linked to cognitive function by altering protein synthesis in the brain.


Assuntos
Drosophila , Corpos Pedunculados , Animais , Encéfalo , Cognição , Processamento de Proteína Pós-Traducional
16.
Ying Yong Sheng Tai Xue Bao ; 35(3): 780-788, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646766

RESUMO

The primary goal of national parks is to protect ecological environment, but also with the functions of scientific research, education, and recreation. Aiming for the realization of universal sharing, we used the analytic hierarchy process (AHP) to construct an ecotourism suitability evaluation system by selecting four factors, including landscape resources, ecological environment carrying capacity, recreation utilization capacity and social condition, taking Xiaoxiangling area of Giant Panda National Park and the surrounding communities as an example. We evaluated the ecotourism suitability based on GIS, and conducted a questionnaire survey of tourists, to propose suggestions on the functional zoning in terms of ecotourism suitability and subjective choice preferences of tourists. The results showed that the ecotourism suitability of the evaluation area could be classified into five levels. The most suitable areas were located nearby the natural landscape resources and far away from the core conservation area, and the least suitable areas distributed at the edge of the core conservation area. According to the results of suitability analysis, the evaluation area was divided into suitable development area, moderate development area, and restricted development area. Combined with the tourist preferences, we divided the recreational activities in the evaluation area into seven activities, namely, ecotourism, eco-camping, science education, leisure vacation, agricultural and animal husbandry culture experience, eco-education, and mountain adventure. These findings could help provide suitable services for different tourists and offer reference for the ecotourism developmental planning of the Xiaoxiangling area of the Giant Panda National Park.

17.
Nat Prod Res ; : 1-8, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587148

RESUMO

Two novel phenylpropanoid amides, namely huomarenamide A (1) and huomarenamide B (2), along with twelve known compounds (3-14), were isolated from the seeds of Cannabis sativa L. The structures with absolute configurations of new compounds were unequivocally determined by spectroscopic analyses and the ECD method. The identification of the known compounds was based on a comparison of their 1D NMR data with literature references. All compounds were assessed for cytotoxic activity against LN229 cells, revealing that compounds 2, 13, and 14 exhibited significant cytotoxicity with IC50 values ranging from 9.02 to 21.26 µM.

18.
Fitoterapia ; 175: 105883, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38458497

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disease in the world. As one of the major degradation pathways, autophagy plays a pivotal role in maintaining the effective turnover of proteins and damaged organelles in cells. Lewy bodies composed of α-synuclein (α-syn) abnormally aggregated in the substantia nigra are important pathological features of PD, and autophagy dysfunction is considered to be an important factor leading to abnormal aggregation of α-syn. Phenylpropionamides (PHS) in the seed of Cannabis sativa L. have a protective effect on neuroinflammation and antioxidant activity. However, the therapeutic role of PHS in PD is unclear. In this study, the seeds of Cannabis sativa L. were extracted under reflux with 60% EtOH-H2O, and the 60% EtOH-H2O elution fraction was identified as PHS with the UPLC-QTOF-MS. The 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced PD model in C57BL/6 J mice was used for behavioral and pharmacodynamic experiments. Behavioral symptoms were improved, Nissl-stained and TH-positive neurons in the substantia nigra were significantly increased in PHS-treated MPTP-induced PD model mice. Compared with the model group, PHS treatment reduced the expression level of α-syn, and the expression of TH increased significantly by western blotting, compared with the model group, the PHS group suppressed Caspase 3 and Bax expression and promoted Bcl-2 expression and levels of p62 decreased significantly, the ratio of LC3-II/I and p-mTOR/mTOR in the PHS group had a downward trend, suggesting that the therapeutic effect of PHS on MPTP-induced PD model mice may be triggered by the regulation of autophagy.

19.
3 Biotech ; 14(4): 97, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38449710

RESUMO

Cucumber wilt is an important soil borne disease in cucumber production, which seriously affects the development of the cucumber industry. Cleome spinosa also has pharmacological effects such as antibacterial, analgesic, anti-inflammatory, and insect repellent. To study the control effect and mechanism of Cleome spinosa fumigation on cucumber wilt disease, different concentrations of Cleome spinosa fragments were applied on cucumber plants infected with Fusarium oxysporum. Cleome spinosa fumigation significantly reduced the incidence rate of cucumber Fusarium wilt. Under the fumigation treatment of 7.5 g kg-1 Cleome spinosa fragments, the preventive effects were 74.7%. Cleome spinosa fragments fumigation can promote cucumber growth and synthesis of photosynthetic pigments, thereby improving individual plant yield and fruit quality. At 7.5 g kg-1 Cleome spinosa fragments fumigation treatment, the plant height and individual plant yield of cucumber increased by 20.3% and 34.3%, respectively. Cleome spinosa fumigation can enhance the activity of antioxidant enzymes in cucumber, maintain a balance of reactive oxygen species metabolism, and enhance the plant disease resistance. Moreover, Cleome spinosa can also regulate the activities of Mg2+-ATPase and Ca2+-ATPase, enhancing its resistance to Fusarium oxysporum. Moreover, number of bacteria and fungi significantly decreased under Cleome spinosa fumigation. Those results suggested that Cleome spinosa could effectively restrain cucumber Fusarium wilt. This study will provide a new idea for the further use of biological fumigation to prevent soil-borne diseases.

20.
J Phys Chem Lett ; 15(10): 2690-2696, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427379

RESUMO

A cocrystallization strategy is used through incorporation of 1,2,4,5-tetracyanobenzene (TCNB) as an acceptor with halogen-substituent thioxanthone (TX) derivatives as donors. The resulting cocrystals TT-R (R = H, F, Cl, Br, or I) transform the thermally activated delayed fluorescence emission in the TT-H, TT-F, and TT-Cl cocrystals to room-temperature phosphorescence in the TT-Br and TT-I cocrystals. Definite crystal packing structures demonstrate a 1:1 alternative donor-acceptor stacking in the TT-H cocrystal, a 2:1 alternative donor-acceptor stacking in the TT-F and TT-Cl cocrystals, and a separate stacking of donor and acceptor in the TT-Br and TT-I cocrystals. A transformation law can be revealed that with an increase in atomic number from H, F, Cl, Br, to I, the cocrystals show the structural transformation of the number of aggregated TX-R molecules from monomers to dimers and finally to multimers. This work will facilitate an understanding of the effect of halogen substituents on the crystal packing structure and luminescence properties in the cocrystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...